

Nunes, P.1; Gomes, T.1; Ribeiro, A. C.1; Bessa, L.1

¹Instituto Universitário Egas Moniz, Monte de Caparica, Portugal

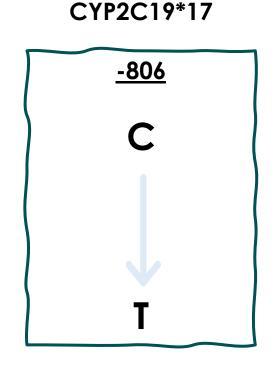
Superfamília CYP

A superfamília CYP, é um grupo grande e diversificado de **enzimas hepáticas** que formam o principal sistema de metabolização de **fase** I para lípidos, hormonas, toxinas e fármacos.

(Dean & Kane, 2012)

CYP2C19

A enzima **CYP2C19** contribui para o **metabolismo de vários fármacos**, como: antidepressivos, agentes antifúngicos, alguns **inibidores da bomba de protões** e benzodiazepinas.



O gene CYP2C19 é altamente polimórfico, como tal, a sua ação será altamente variável o que pode resultar numa alteração no metabolismo dos fármacos.

Polimorfismos CYP2C19

681 G

Superfamília CYP

CYP2C19 - Alelo *17

O alelo CYP2C19*17 está associado ao

aumento da atividade enzimática

É encontrado em indivíduos com fenótipos de "metabolizador rápido" (*1/*17) e "ultra-rápido" (*17/*17)

(Baldwin et al., 2008)

Tabela 1

Tipos de fenótipos do CYPC19 com base no genótipo

Phenotype	Genotype	Examples of diplotype
CYP2C19 ultrarapid metabolizer (approximately 2–5% of individuals) ^a	An individual with 2 increased function alleles	*17/*17
CYP2C19 rapid metabolizer (approximately 2–30% of individuals)	An individual with one normal function allele and one increased function allele	*1/*17
CYP2C19 normal metabolizer (approximately 35–50% of individuals)	An individual with 2 normal function alleles	*1/*1
CYP2C19 intermediate metabolizer (approximately 18–45% of individuals)	An individual with one normal function allele and one no function allele or one no function allele and one increased function allele	*1/*2 *1/*3 *2/*17 ^b
CYP2C19 poor metabolizer (approximately 2–15% of individuals)	An individual with 2 no function alleles	*2/*2 *2/*3 *3/*3

Superfamília CYP

CYP2C19

Polimorfismos CYP2C19

Alelo *17

Alelos *2 *3

Frequências Alélicas

Omeprazol

CYP2C19 e Omeprazol

Conclusões

CYP2C19 - Alelos *2 e *3

Indivíduos que possuem 1 cópia de alelos não funcionais (por exemplo, os genótipos *2 ou *3) são classificados como "metabolizadores intermediários"

Indivíduos que possuem 2 alelos não funcionais são classificados como "metabolizadores fracos" (por exemplo, os genótipos *2/*2, *2/*3 e *3/*3)

Tabela 1

Tipos de fenótipos do CYPC19 com base no genótipo

Phenotype	Genotype	Examples of diplotype
CYP2C19 ultrarapid metabolizer (approximately 2–5% of individuals) ^a	An individual with 2 increased function alleles	*17/*17
CYP2C19 rapid metabolizer (approximately 2–30% of individuals)	An individual with one normal function allele and one increased function allele	*1/*17
CYP2C19 normal metabolizer (approximately 35–50% of individuals)	An individual with 2 normal function alleles	*1/*1
CYP2C19 intermediate metabolizer (approximately 18–45% of individuals)	An individual with one normal function allele and one no function allele or one no function allele and one increased function allele	*1/*2 *1/*3 *2/*17 ^b
CYP2C19 poor metabolizer (approximately 2–15% of individuals)	An individual with 2 no function alleles	*2/*2 *2/*3 *3/*3

CYP2C19 – Frequências alélicas

Frequências alélicas do gene CYP2C19*2:

15% em caucasianos de ascendência europeia

15% em africanos

27-36% em asiáticos

Frequências alélicas do gene CYP2C19*3:

2-7% em populações asiáticas

Raras em outros grupos raciais

Frequências alélicas do gene CYP2C19*17

1,3-4% entre as populações asiáticas

20-33,7% em populações africanas, europeias e orientais

Omeprazol

Omeprazol pertence à família de **fármacos Inibidores da Bomba de Protões (IBP)**

A sua principal função é **bloquear a secreção de ácido gástrico** através da inibição da H+/K+ ATPase nas células parietais gástricas

É a **primeira linha de terapêutica** para a úlcera gástrica e duodenal

CYP2C19 e Omeprazol

O Omeprazol é **metabolizado e inativado no fígado** pelo sistema do citocromo P450, onde o **gene CYP2C19** codifica a principal enzima que participa nessa ação

Uma atividade reduzida do CYP2C19 representa até, pelo menos, o dobro da dosagem plasmática de Omeprazol com doses standard em comparação com indivíduos com uma atividade normal

CYP2C19 e Omeprazol

CYP2C19

<u>Metabolizador Fraco e</u> Intermédio

- + Concentração plasmática de Omeprazol
 - + Eficácia terapêutica

Possível toxicidade

CYP2C19

Metabolizador Rápido

- Concentração plasmática de Omeprazol
 - Eficácia terapêutica

Manter a dose diária

CYP2C19

Metabolizador Ultra rápido

- Concentração plasmática de Omeprazol
 - Eficácia terapêutica

Aumento da dose diária

CONCLUSÕES

O gene CYP2C19 é um gene altamente polimórfico, como tal, existe variabilidade de resposta no que toca à metabolização de diversos fármacos, tais como o Omeprazol

Assim, esta variabilidade deve ser tida em conta na escolha do regime terapêutico a fim de alcançar uma maior eficácia terapêutica e evitar reações adversas

BIBLIOGRAFIA

- 1. Baldwin, R. M., Ohlsson, S., Pedersen, R. S., Mwinyi, J., Ingelman-Sundberg, M., Eliasson, E., & Bertilsson, L. (2008). Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. *British journal of clinical pharmacology*, 65(5), 767–774. https://doi.org/10.1111/j.1365-2125.2008.03104.x
- 2. Dean, L., & Kane, M. (2012). Omeprazole Therapy and CYP2C19 Genotype. In V. M. Pratt (Eds.) et. al., Medical Genetics Summaries. National Center for Biotechnology Information (US).
- 3. Dehbozorgi, M., Kamalidehghan, B., Hosseini, I., Dehghanfard, Z., Sangtarash, M. H., Firoozi, M., Ahmadipour, F., Meng, G. Y., & Houshmand, M. (2018). Prevalence of the CYP2C19*2 (681 G>A), *3 (636 G>A) and *17 (-806 C>T) alleles among an Iranian population of different ethnicities. *Molecular medicine reports*, 17(3), 4195–4202. https://doi.org/10.3892/mmr.2018.8377