

GENOTOXICIDADE DE RESINAS COMPOSTAS BULK FILL

CARLA JUNQUEIRA¹, PAULO MASCARENHAS¹, ANA CLARA RIBEIRO¹ E ISABEL BARAHONA¹

¹Laboratório de Biologia Molecular, Centro de Investigação Interdisciplinar Egas Moniz,CiiEM, Instituto Superior de Ciências da Saúde Egas Moniz, ISCSEM, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal.

INTRODUÇÃO:

Nos últimos anos surgiram uma nova classe de resinas compostas, denominadas Bulk Fill e, que foram desenvolvidas para facilitar e agilizar o procedimento restaurador, uma vez que permitem sua inserção em camadas de 4-5 mm¹. Dados científicos quanto à sua biocompatibilidade ainda são limitados². A biocompatibilidade da resina composta é determinada principalmente por seu grau de conversão (DC), pois este fator pode determinar a maior ou menor libertação de monómeros não polimerizados durante seu processo de fotopolimerização³. Os monómeros residuais libertados ao meio oral, possuem características citotóxicas e genotóxicas⁴.

OBJETIVOS:

Avaliar a biocompatibilidade das resinas FiltekTM Bulk Fill e Tetric EvoCeram Bulk Fill em culturas de fibroblastos de ratinho, através de ensaio laboratorial *in vitro*.

MATERIAIS E MÉTODOS:

A genotoxicidade foi avaliada utilizando o Ensaio dos Micronúcleos (MN). Utilizámos uma linha celular bem caracterizada e muito utilizada para este tipo de ensaios: a linha celular 3T3 de fibroblastos embrionários de ratinho. Os extratos das 2 resinas foram obtidos por incubação dos cilindros de resina (confecionados conforme o fabricante) em meio de cultura durante 24h a 37°C em atmosfera húmida e 5% de CO₂. Para a realização do teste de MN, as células foram expostas a diferentes concentrações dos extratos das resinas FiltekTM Bulk Fill e Tetric EvoCeram Bulk Fill. A presença de micronúcleos foi determinada por visualização ao microscópio óptico.

1- Preparação das Culturas de Células:

Figura 1 - Células 3T3 armazenadas em criotubos a -140°C.

Figura 2 - Células 3T3 Aderentes, microscópio ótico invertido Axiovert 25 (Zeiss, EUA). (Ampliação 400x).

Figura 3 - Imagem de Microscopia Óptica representativa das células 3T3 presentes numa placa de Neubauer (Ampliação de 100x).

2- Preparação das Resinas Bulk Fill:

Figura 4 - Apresentação comercial da resina

Figura 7 - Cilindros das diferentes resinas após a polimerização.

Figura 5 - Apresentação comercial da resina Tetric EvoCeram Bulk Fill.

3- Ensaio dos Micronúcleos:

Tabela 1 - Preparação das diferentes concentrações da Dose Letal dos extractos das diferentes Resinas Bulk Fill

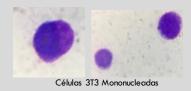
DL50 dos extractos []	DMEM completo (ml)	Extracto da resina Filtek™ Bulk Fill (ml)	Extracto da resina Tetric EvoCeram Bulk Fill (ml)
Mitomicina (C+)	5	0	0
(C-)	5	0	0
75%	1,25	3,75	3,75
50%	2,5	2,5	2,5
20%	4	1	1
5%	4,75	0,25	0,25
1%	4,95	0,05	0,05
0,5%	4,975	0,025	0,025

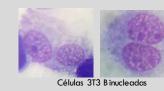
Figura 8 - Diferentes concentrações dos extractos das Resinas Bulk Fill

Figura 9 — Lâminas confecionadas com os diferentes extractos das 2 Resinas Bulk Fill, durante o Ensaio dos MN.

RESULTADOS:

FiltekTM Bulk Fill não demonstrou genotoxicidade estatisticamente significativa e durante a fotopolimerização, apresentou polimerização completa e consistência firme, sugerindo um alto grau de DC. Tetric EvoCeram Bulk Fill também não demonstrou genotoxicidade significativa embora após fotopolimerização apresente uma menor consistência.


1- Polimerização das Resinas:


Tabela 2 – Resultado da polimerização das diferentes Resinas Bulk Fill

Resina	Polimerização	Consistência
Filtek [™] Bulk Fill	Completa	Firme
Tetric EvoCeram® Bulk Fill	Média	Média

2 - Genotoxicidade:

Figura 9 — Células 3T3 visualizadas no Ensaio MN. Microscópio óptico Optika B-350 (Itália). (Ampliação 1000x).

CONCLUSÕES:

As resinas FiltekTM Bulk Fill e Tetric EvoCeram Bulk Fill apresentaram baixa genotoxicidade, demonstrando ser seguras para usos clínicos prolongados.

RELEVÂNCIA CLÍNICA:

É importante a conscientização dos médicos-dentistas sobre a biocompatibilidade e possível toxicidade dos materiais dentários, que podem causar implicações locais e sistémicas aos doentes.

REFERÊNCIAS BIBLIOGRÁFICAS:

- 1- Haugen, H. J, Marovic, D., Par, M., Thieu, M.K.L, Reseland, J.E., Johnsen, G.F. (2020). Bulk Fill Composites Have Similar Performance to Conventional Dental Composites. Int. J. Mol. Sci., (21)5136, 1-21. doi²:10.3390/ijms21145136.
 2- Demirel, G., Gür, G., Demirsoy, F. F., Altuntas, E. G., Yener-Ílce, B., Kiliçarslan, M. A. (2020). Cytotoxic effects of contemporary bulk-fill dental composites: A real-time cell analysis. Dent Mater J., (39)1, 101–110. doi²:10.4012/dmj.2018-336.
- 2- Demirel, G., Gür, G., Demirsoy, F. F., Altuntas, E. G., Yener-İlce, B., Kiliçarslan, M. A. (2020). Cytotoxic effects of contemporary bulk-fill dental composites: A real-time cell analysis. Dent Mater J., (39)1, 101–110. doi²: 3- Girão et al. (2020). Influence of the degree of conversion and Bis-GMA residues of bulk fill resins on tissue toxicity in na subcutaneous model in rats. JABFM, 1-10. doi²: 10.1177/2280800020947330.
- 4- Kincses, D. et al. (2021). Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites. Polymers, (13)3599, 1-20. doi²:10.3390/polym13203599.