

NANOPARTÍCULAS NA VETORIZAÇÃO DE FÁRMACOS AO CÉREBRO

Lucia Li, Lúcia Lourenço, Sofia Santiago, Mariana Dias, Ana I. Fernandes

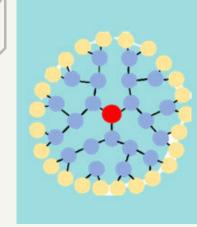
Instituto Universitário Egas Moniz, Campus Universitário, Qta. da Granja, Monte da Caparica, 2829-511 Caparica, Portugal

A Barreira Hematoencefálica (BHE) é uma membrana com permeabilidade seletiva presente no cérebro e que tem como principal função proteger o Sistema Nervoso Central (SNC) de agentes externos (causadores de infeções ou inflamações), razão pela qual a veiculação de fármacos ao cérebro é condicionada.

De forma a ultrapassar esta barreira e direcionar os fármacos ao cérebro, otimizando assim o efeito terapêutico, tem-se tentado novas estratégias, como o uso de nanopartículas. Existem vários tipos de nanopartículas, mas para transposição da BHE são usadas principalmente **partículas poliméricas, lipossomas, micelas e dendrímeros**.

Partículas Poliméricas

- 1 a 100 nm
- Partículas biodegradáveis de origem natural ou sintética com capacidade de integrar diversos fármacos
- Veiculam essencialmente fármacos convencionais, oligonucleótidos e péptidos.
- <u>Vantagens</u>: Facilidade nas modificações da superfície da molécula (PEGuilação); boa biocompatibilidade; aprisionamento do fármaco através de nanoencapsulação prevenindo a fagocitose.
- <u>Limitações</u>: Eficiência de translocação baixa; variação interlote; baixa capacidade de incorporação de fármacos; agregação partícula-partícula, aumentando a complexidade no manuseio tanto em sólidos como líquidos; induzem a osmose provocando a lise dos lisossomas.


Lipossomas

• 50 a 450 nm.

- Nanopartículas com forma esférica compostas por uma bicamada fosfolipídica anfipática.
- Englobam moléculas quer hidrofóbicas, quer hidrofílicas, como: **fármacos convencionais**, **vacinas**, **ácidos nucleicos** e **proteínas**.
- <u>Vantagens</u>: Facilidade em fazer modificações na superfície da molécula; boa biocompatibilidade; natureza anfipática; tempo de circulação sanguínea razoável (se PEGuilados).
- <u>Limitações</u>: Elevado custo de produção; reduzido tempo de semi-vida; baixa solubilidade; variação interlote; perda do fármaco encapsulado durante o processo de armazenagem.

Dendrímeros

- 1,5 a 10 nm.
- Compostas por inúmeros monómeros ramificados de forma radial a partir de um núcleo central.
- São usados como sistema de veiculação de **fármacos hidrofóbicos** que são encapsulados no seu interior, adsorvidos ou ligadas às extremidades das ramificações.
- <u>Vantagens</u>: Tamanho pequeno e massa molecular baixa, baixa viscosidade, alta solubilidade e miscibilidade em solventes orgânicos, rigidez e elevada reatividade das cadeias terminais.
- <u>Limitações</u>: Elevado custo de produção, variação interlote.

Micelas

- 10 a 100 nm
- Nanotransportadores possuem uma única camada anfipática que permite controlar a libertação de fármacos encapsulados.
- Veiculam pequenas moléculas e péptidos, permitindo a passagem de fármacos hidrofóbicos.
- <u>Vantagens</u>: Boa encapsulação, conseguem ultrapassar facilmente a BHE e proteger as células contra o stress oxidativo e a apoptose.
- <u>Limitações</u>: Elevado custo de produção, sofrem facilmente deformações, elevada instabilidade, problema associado à possível ativação de uma resposta imunogénica.

Existem diversos sistemas nanoparticulares concebidos para a vetorização de fármacos ao cérebro conforme o tecido-alvo, a condição clínica e as caraterísticas físico-químicas do fármaco.

Conclusão

Os sistemas abordados neste trabalho são os mais usados como adjuvantes na passagem de fármacos através da BHE e a sua escolha deve ter em consideração as vantagens e desvantagens discutidas, de forma a priorizar aquele que melhor se adapta à situação clínica a tratar.

Referências:

1. Ahlawat, J. et al. (2020). Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood-Brain Barrier: Challenges and Possibilities. ACS omega, 5(22), 12583–12595. 2. Ayub, A., & Wettig, S. (2022). An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics, 14(2), 224.