

Buffer-Free High-pH LC-MS/MS Method to Determine Phosphatidylethanol and 20 Drugs in Blood

Maria, Marisa^{1*}; Jørgenrud, Benedicte²; McQuade, Tao²; Nilsson, Galina²; Neng, Nuno^{1,3}; Berg, Thomas²

* E-mail: marisahm1998@gmail.com

¹ Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749 -016 Lisboa, Portugal.
² Department of Forensic Sciences, Division of Laboratory Medicine, Section of Drug Abuse Research, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424, Lovisenberggt. 6 Oslo 0456, Norway.
³ Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.

1. Background

Alcohol, medicinal, and illicit drugs have significant health and economic impacts. Therefore, reliable determination of these substances is essential in forensic and pharmacological studies. While most LC-MS/MS methods use acidic mobile phases, basic mobile phases offer advantages for many compounds, such as enhanced retention, increased sensitivity, improved peak shapes¹.

2. Objective

This study aimed to develop a sensitive, accurate and precise LC-MS/MS method for the quantification of the alcohol biomarker phosphatidylethanol 16:0/18:1 (PEth 16:0/18:1) and 20 additional drugs and metabolites ².

3. Methodology

Whole blood was prepared by 96-well supported liquid extraction (96-SLE) and then analysed by reversed phase LC-MS/MS (Figure 1). LC-MS/MS analyses were performed on an Acquity BEH C18 column (50 x 2.1mm, 1.7 μ m particles). The injected volume was 1 μ L. The mobile phase composition was 0.025% ammonia, pH 10.7 (0.025% NH₃) and methanol (MeOH). See Fig. 1.

0						4444					
0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	Time (min)		
 Benzoylecgonin Morphine Amphetamine Codeine Nitrazepam 		6. Clonazepam 7. Zopiclone 8. MDMA 9. Oxycodone 10. Oxazepam		11. Meth 12. Zolpi 13. Alpra 14. N-de 15. Diaze	namphetamine dem azolam smetyldiazepam epam		 16. Cocaine 17. Tramadol 18. Methadone 19. THC 20. Buprenorphine 21. PEth 16:0/18:1 				

Figure 3: Chromatographic separation of the 21 compounds from the unwanted phospholipid background (purple broad peak, obtained by Parent Ion scan *m/z* of 184). All peaks are normalized to 100 % height. The phospholipid background got a much higher relative response than presented in the figure.

Table 1: Precision and accuracy (n = 8 assays); Recovery and matrix effects corrected by the internal standards

Alprazolam					Diazepam					Oxazepam							
Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect (%) (n=8)	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect (%) (n=8)	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effec (%) (n=8)
5	4	10	-15		(/0) (11 0)	10	9	7	-12		(///	25	26	7	5		(/// (
10	9	3	-12	87	106	20	18	3	-10	88	101	50	53	5	6	93	100
20	17	3	-15	_		40	34	2	-14			101	101	3	0		
240	224	6	-7	85	107	481	450	4	-6	86	102	1202	1319	5	10	86	101
1200	1249	9	4			2407	2513	10	4			6012	6347	9	6		-
		Amphe	etamine					MD	MA					Охусо	done		
					Corrected						Corrected					_	Corrected
Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Matrix Effect (%) (n=8)	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Matrix Effect (%) (n=8)	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Matrix Effe (%) (n=8)
15	14	9	-10			15	15	7	-3			5	4	10	-13		
30	25	4	-18	85	105	30	29	3	-2	85	99	10	9	5	-8	88	99
60	51	16	-14			60	54	4	-10			25	17	3	-32		
720	690	7	-4	87	109	720	693	4	-4	84	101	240	225	5	-25	87	101
3600	3777	6	5			3600	3863	9	7			1500	1260	8	-16		
		Benzoy	lecgonin					Metha	adone					PEth 16	.0/18:1		
Theory cours	Colo como			Deserver	Corrected	Theory	Colo como			Decement	Corrected	Theory	Colo como		A	Deservem	Corrected
(nM)	Calc. conc. (nM)	(%))	Accuracy (%)	(%) (n=4)	Matrix Effect (%) (n=8)	(nM)	(nM)	(%))	Accuracy (%)	(%) (n=4)	Matrix Effect (%) (n=8)	(nM)	(nM)	(%))	Accuracy (%)	(%) (n=4)	Matrix Effe (%) (n=8)
5	5	6	-9			15	15	5	2			15	15	20	-1		
10	9	10	-8	11	101	30	30	4	0	87	103	30	28	10	-7	79	107
20	18	5	-12			60	58	4	-4			60	51	6	-14		
240	232	9	-3	10	101	720	676	5	-6	86	104	720	750	7	4	76	105
1200	1240	6	3			3600	3055	7	-15			3600	3912	18	9		
		Bupren	orphine					Methamp	hetamine					TH	С		
Theor. conc.	Calc. conc.	CV (RSD	Accuracy	Recovery	Corrected Matrix Effect	Theor. conc.	Calc. conc.	CV (RSD	Accuracy	Recovery	Corrected Matrix Effect	Theor. conc.	Calc. conc.	CV (RSD	Accuracy	Recovery	Corrected Matrix Effe
(nivi)	(nivi)	(%))	(%)	(%) (n=4)	(%) (n=8)	(nivi)	(nivi)	(%))	(%)	(%) (n=4)	(%) (n=8)	(nivi)	(nivi)	(%))	(%)	(%) (n=4)	(%) (n=8)
1	1	6	-11			15	14	6	-10			1	1	4	3		
2	2	4	-7	54	98	30	26	10	-13	89	111	2	2	9	-6	67	103
4	3	7	-15			60	53	16	-12			4	3	3	-16		
48	48	10	0	56	100	720	739	13	3	87	106	48	42	6	-12	63	102
240	236	10	-2			3600	4494	12	25			240	213	10	-11		
		Clona	zepam					Morŗ	ohine					Tram	adol		
Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect (%) (n=8)	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect (%) (n=8)	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effe (%) (n=8)
2	2	6	-18			5	4	7	-14			15	14	6	-7		
4	3	3	-13	87	101	10	9	4	-11	80	99	30	28	5	-7	87	105
8	7	2	-18			20	17	5	-14			60	52	3	-13		
96	86	5	-10	85	101	240	242	6	1	75	101	720	676	5	-6	87	99
482	470	7	-2			1200	1184	9	-1			3600	2878	25	-20		
		Cod	leine				N	-desmeth	yldiazepan	1				Zolpi	dem		
Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effe
-				. , . ,	(%) (n=8)						(%) (n=8)	, ,					(%) (n=8)
5	5	4	4			10	9	6	-12			10	9	10	-13		
10	10	3	-3	91	96	20	19	3	-6	92	102	20	18	3	-9	85	100
20	18	2	-11			40	35	3	-12			40	34	4	-14		
240	228	5	-5	86	102	481	467	5	-3	86	102	480	446	4	-7	88	101
1200	1277	8	6			2407	2579	8	7			2400	2526	13	5	<u> </u>	
		Coc	aine					Nitraz	lepam					Zopic	ione		
Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effect	Theor. conc. (nM)	Calc. conc. (nM)	CV (RSD (%))	Accuracy (%)	Recovery (%) (n=4)	Corrected Matrix Effe
F		0	0		(%) (N=8)		F	0	2		(%) (n=8)	4 Г	1 /	C			(%) (n=8)
5	5	8	-9		400	5	5	8	-2		400	15	14	6	-4	07	
10	9	6	-8	88	100	10	10	3	0	88	100	30	30	6	-2	8/	98
20	1/	3	-13			1 20	10		1 L			1 60	1 55		-X		1
						20	15	Z	-5			00		_	-0		
240	224	5	-7	86	101	240	244	5	2	85	100	720	711	5	-1	87	99

Figure 1: Schematic of the experimental procedure, 96-well supported-liquid extraction (SLE) and instrument analysis by LC-MS/MS (created on Biorender)

4. Results and Discussion

A sensitive, accurate and precise LC-MS/MS method for the determination of phosphatidylethanol (PEth) 16:0/18:1 and 20 drugs and metabolites was developed and validated (see data in Table 1). Stable isotope labelled internal standards were used for all compounds.

- Increased retention for most compounds in a basic mobile phase (Fig. 2.)
- Retention for PEth 16:0/18:1, THC and benzodiazepines were unaffected by mobile phase pH (Fig. 2).
- Buffer-free basic mobile phase (0.025% ammonia, pH 10.7) effectively separated PEths from unwanted phospholipids and avoided co-elution (Fig. 3).
- The method was validated with accuracy and precision within ±20 %, and matrix effects were minimal (Table 1).

5. Conclusion

- A precise, accurate and sensitive LC-MS/MS method for determination of PEth 16:0/18:1 and 20 drugs/metabolites in whole blood was developed and fully validated.
- A basic mobile phase increased retention and sensitivity for several compounds compared to using acidic mobile phase
- Buffer-free mobile phase used to improve separation of PEth 16:0/18:1 from unwanted phospholipids, reducing matrix effects.

Figure 2: Chromatographic separation of the 21 compounds using a basic and an acidic mobile phase

References:

[1] Tan A, Fanaras JC. Use of high-pH (basic/alkaline) mobile phases for LC–MS or LC–MS/MS bioanalysis. Biomedical Chromatography 2019;33. <u>https://doi.org/10.1002/bmc.4409</u>.

[2] Jørgenrud B, McQuade T, Maria MH, Nilsson G, Berg T. Buffer-free high pH mobile phase LC-MS/MS for determination of the alcohol biomarker phosphatidylethanol 16:0/18:1 and 20 drugs and metabolites in whole blood. Talanta 2025;282:126964. https://doi.org/10.1016/j.talanta.2024.126964.

More information in the published paper

ACKNOWLEDGMENTS

Centro de Química Estrutural is a Research Unit funded by Fundação para a Ciência e a Tecnologia through projects UIDB/00100/2020 (https://doi.org/10.54499/UIDB/00100/2020). Institute of Molecular Sciences is an Associate Laboratory funded by Fundação para a Ciência e a Tecnologia through project LA/P/0056/2020 (https://doi.org/10.54499/LA/P/0056/2020). Marisa Henriques Maria is grateful to acknowledge her PhD grant no. 2022.10965.BDANA awarded by Fundação para a Ciência e a Tecnologia e a Ciência e a Tecnologia. CiiEM has provided support through Project 10.54499/UIDB/04585/2020, funded by FCT.

