

Institute for Health and Bioeconomy

Nanoparticles in Endodontics: Bridging Science and Clinical Application

Tiago Dionísio^{1,2,3}, Pedro Brandão^{1,2,3,4}, José João Mendes¹ and Pedro Fonte^{2,3,5,6}

¹ Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Caparica, Almada, Portugal ² iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001

³ Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

⁴ Coimbra Chemistry Centre (CQC)-IMS, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal ⁵ Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal ⁶ Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal

INTRODUCTION

Persistent endodontic infections remain difficult to eliminate due to the resistance of some pathogens, especially Enterococcus faecalis, the organization of bacteria in biofilms, and the difficulty in successfully disinfecting the most remote areas of the root canal anatomy (1, 2). Traditional irrigants and intracanal drugs are ineffective against some bacterial strains, have limited penetration, and provide only short-term activity (2, 3). Nanoparticles (NPs) offer enhanced antimicrobial performance, deeper diffusion, and controlled drug release, making them a promising strategy to overcome these limitations and improve root canal disinfection (3, 4, 5). This work focuses on the most relevant nanoparticles currently explored in endodontics, including silver, chitosan, silica-based, selenium, herbal-derived, lipid-based and calcium hydroxide nanoparticles (1–6).

TABLE 1. TYPES OF NANOPARTICLES AND THEIR MAIN CHARACTERISTICS

Nanoparticle Type	Composition / Structure	Primary Advantages	Limitations
Silver NPs (AgNPs)	Metallic Ag; core-shell structures	Strong broad-spectrum antimicrobial effect; Reactive Oxygen Species generation; Membrane disruption	Potential genotoxicity; Stability issues; Dose-dependent cytotoxicity
Chitosan NPs (CS-NPs)	Cationic biopolymer	Biocompatible; Chelation effects; Tubule penetration; Biofilm disruption	Limited long-term stability; Formulation variability
Silica NPs	Porous silica (often loaded with Ag or Chloroexidine (CHX))	High loading capacity; Controlled drug release	Possible aggregation; Requires surface modification
Selenium NPs (SeNPs)	Elemental selenium	Potent antibiofilm effect; Synergistic with Photodynamic Therapy	Narrow therapeutic window
Herbal / Propolis NPs	Plant-derived compounds encapsulated in polymers	Biocompatible; Antioxidant	Lower standardization; Variability in active compounds
Lipid NPs (e.g., CHX-loaded)	Solid lipid or nanostructured carriers	Sustained release; Compatibility with sealers	Complex synthesis; Stability concerns
Calcium hydroxide NPs	Nanoscale Ca(OH) ₂	Improved penetration; Greater alkalinity; Enhanced antimicrobial action	Short-term activity; Solubility issues
Polymeric NPs (e.g., PLGA, PCL, PLA)	Biodegradable aliphatic polyesters	Controlled drug release; tunable degradation; High biocompatibility	More complex synthesis; Dependent on solvent removal; Cost

TABLE 2. MECHANISMS OF ACTION OF NANOPARTICLES AGAINST ENDODONTIC PATHOGENS

Mechanism	Description	Types of Nanoparitcles Involved
Membrane disruption	Increased permeability, rupture, cytoplasmic leakage	AgNPs, CHX-loaded NPs, SeNPs
Generation of reactive oxygen species (ROS)	Oxidative damage to proteins, lipids, DNA	AgNPs, SeNPs
Inhibition of DNA replication	Interaction with phosphorus/sulfur groups in DNA	AgNPs, SeNPs
Protein synthesis inhibition	Ribosomal denaturation and protein expression arrest	AgNPs
Chelation and biofilm matrix destabilization	Interaction with Ca ²⁺ and biofilm components	Chitosan NPs
Enhanced drug delivery	Controlled release into tubules, prolonged antimicrobial effect	Silica NPs, lipid NPs, polymeric NPs
Synergy with Photodynamic therapy or irrigants	Increased ROS or enhanced cell death	SeNPs, herbal NPs

TABLE 3. TRANSLATING NANOPARTICLES INTO **CLINICAL ENDODONTICS**

Advantages	Challenges	
Superior antimicrobial and antibiofilm efficacy	Potential cytotoxicity/genotoxicity (e.g., AgNPs)	
Enhanced penetration into complex anatomy	Regulatory barriers and classification	
Controlled and sustained drug release	Variability in synthesis protocols	
Compatibility with sealers and hydrogels	Long-term biosafety not fully established	
Potential integration into regenerative therapies	Cost and scalability	

TABLE 4. APPLICATIONS OF NANOPARTICLES IN **ENDODONTICS**

Application	Nanoparticles Used	Outcomes
Irrigation solutions	AgNPs, CHX-NPs, Herbal NPs	Increased disinfection, reduced biofilm
Intracanal drugs	Ca(OH) ₂ -NPs, Chitosan NPs	Improved tubule penetration and sustained effect
Sealers	AgNPs, CHX-loaded Lipid NPs	Enhanced antimicrobial properties without compromising flow
Regenerative endodontics	Chitosan NPs, Bioactive sílica NPs	Growth factor release, dentin conditioning
Photodynamic therapy	SeNPs	Increased ROS and biofilm eradication

CONCLUSIONS

Nanoparticles consistently demonstrate strong antimicrobial and antibiofilm effects against E. faecalis, S. mutans and mixed-species biofilms, with several systems, such as silver, selenium, chitosan, propolis and lipid-based nanoparticles, showing significant Colony-Forming Units reduction and enhanced biofilm disruption. These materials also improve dentinal tubule penetration and exhibit synergistic benefits when combined with irrigants or photoactivated therapies. Overall, nanoparticle-based platforms offer superior disinfection potential compared with conventional agents, positioning nanotechnology as a promising pathway toward more predictable and biologically oriented endodontic treatments.

REFERENCES

- (1) Dionísio T. et al.. Expert Opin. Drug Deliv. 2025, 22
- (2) Nageeb, W. et al.; Sci Rep. 2024 Nov 2;14(1):26441. (3) Wang, Y. et al.; J Endod. 2025 Jan;51(1):54-63
- (4) Raddi, S. et al.; J. Endod. 2024 Aug;50(8):1134-1142
- (5) Yin, X. X.; et al.; Int. J. Nanomed. 2020, 15, 2555-2562.
- (6) Shahmoradi, S. et al.; Photodiagn. Photodyn. Ther. 2021 Sep:35:102398